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Whole Egg Consumption Impairs Insulin Sensitivity in Rat Model of
Obesity and Type 2 Diabetes

Abstract
Background: The literature regarding the relation between egg consumption and type 2 diabetes (T2D) is
inconsistent and there is limited evidence pertaining to the impact of egg consumption on measures of insulin
sensitivity. Objective: The objective of this study was to investigate the effect of dietary whole egg on
metabolic biomarkers of insulin resistance in T2D rats. Downloaded from https://academic.oup.com/cdn/
advance-article-abstract/doi/10.1093/cdn/nzz015/5374517 by Iowa State University user on 28 March
2019 Methods: Male Zucker diabetic fatty rats (n=12; 6 wk of age) and their lean controls (n=12; 6 wk of age)
were randomly assigned to a casein- or whole egg-based diet. At wk 5 of dietary treatment, an insulin tolerance
test (ITT) was performed on all rats and blood glucose was measured by glucometer. After 7 wk of dietary
treatment, rats were anesthetized and whole blood was collected via a tail vein bleed. Following sedation, the
extensor digitorum longus muscle was removed before and after an intraperitoneal insulin injection and
insulin signaling in skeletal muscle was analyzed by western blot. Serum glucose and insulin were analyzed by
ELISA for calculation of the homeostatic model assessment of insulin resistance (HOMA-IR). Results: Mean
ITT blood glucose over the course of 60 min was 32% higher in ZDF rats fed the whole egg-based diet
compared to ZDF rats fed the casein-based diet. Furthermore, whole egg consumption increased fasting
blood glucose by 35% in ZDF rats. Insulin-stimulated phosphorylation of key proteins in the insulin signaling
pathway did not differ in skeletal muscle of ZDF rats fed casein- and whole egg-based diets. In lean rats, no
differences were observed in insulin tolerance, HOMA-IR and skeletal muscle insulin signaling, regardless of
experimental dietary treatment. Conclusions: These data suggest that whole body insulin sensitivity may be
impaired by whole egg consumption in T2D rats, although no changes were observed in skeletal muscle
insulin signaling that could explain this finding.
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Abstract 

Background: The literature regarding the relation between egg consumption and type 2 

diabetes (T2D) is inconsistent and there is limited evidence pertaining to the impact of 

egg consumption on measures of insulin sensitivity.  

Objective: The objective of this study was to investigate the effect of dietary whole egg 

on metabolic biomarkers of insulin resistance in T2D rats.  
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Methods: Male Zucker diabetic fatty rats (n=12; 6 wk of age) and their lean controls 

(n=12; 6 wk of age) were randomly assigned to a casein- or whole egg-based diet. At 

wk 5 of dietary treatment, an insulin tolerance test (ITT) was performed on all rats and 

blood glucose was measured by glucometer. After 7 wk of dietary treatment, rats were 

anesthetized and whole blood was collected via a tail vein bleed. Following sedation, 

the extensor digitorum longus muscle was removed before and after an intraperitoneal 

insulin injection and insulin signaling in skeletal muscle was analyzed by western blot. 

Serum glucose and insulin were analyzed by ELISA for calculation of the homeostatic 

model assessment of insulin resistance (HOMA-IR). 

Results: Mean ITT blood glucose over the course of 60 min was 32% higher in ZDF 

rats fed the whole egg-based diet compared to ZDF rats fed the casein-based diet. 

Furthermore, whole egg consumption increased fasting blood glucose by 35% in ZDF 

rats. Insulin-stimulated phosphorylation of key proteins in the insulin signaling pathway 

did not differ in skeletal muscle of ZDF rats fed casein- and whole egg-based diets. In 

lean rats, no differences were observed in insulin tolerance, HOMA-IR and skeletal 

muscle insulin signaling, regardless of experimental dietary treatment. 

Conclusions: These data suggest that whole body insulin sensitivity may be impaired 

by whole egg consumption in T2D rats, although no changes were observed in skeletal 

muscle insulin signaling that could explain this finding.  

Key Words: whole egg, egg consumption, insulin signaling, insulin resistance, 

diabetes, rat 
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Introduction 

The increasing prevalence of type 2 diabetes (T2D) is a critical public health issue and 

insulin resistance is a key contributor to T2D development (1,2). Insulin resistance is a 

condition characterized by hyperinsulinemia; hyperglycemia; and impaired glucose and 

insulin tolerance (3). Diet is an important modifiable risk factor for insulin resistance and 

the progression of T2D. Therefore, understanding the relation between dietary 

components, such as whole egg, and insulin resistance is essential for developing 

future dietary recommendations for the millions of individuals with existing T2D, as well 

as those that are at high risk for developing T2D.  

Insulin mediates its metabolic effects by binding to the insulin receptor, thereby 

modifying the activity and/or intracellular location of proteins involved in the insulin 

signaling pathway. Insulin binding to the insulin receptor triggers autophosphorylation of 

the insulin receptor  (IR ) subunit, which activates the receptor and initiates a cascade 

of phosphorylation events (4). Key events in the insulin signaling cascade include the 

activation of the insulin receptor substrate 1 (IRS-1) via tyrosine phosphorylation; 

serine/threonine phosphorylation of Akt and its subsequent activation; phosphorylation 

of Akt substrate 160 (AS160) at serine/threonine residues and translocation of the 

glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane, 

resulting in increased glucose uptake in skeletal muscle and adipose tissue (5–7). 

Defects in insulin function through the sequential action of the insulin receptor, IRS-1, 

Akt, AS160 and GLUT4 have been reported in metabolic disorders associated with 

insulin resistance, such as obesity and T2D (8,9). Impaired insulin signaling at any of 

these key steps reduces the ability of insulin to promote glucose uptake and utilization.  
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Limited and inconsistent findings have been reported on the relation between egg 

consumption and T2D. Whereas some studies suggest that egg consumption increases 

the risk of T2D (10–12), others report a null association or a beneficial impact on T2D 

risk and outcomes (13–18). A meta-analysis found no association between egg 

consumption and T2D risk in countries outside of the U.S., but found a modest increase 

in T2D risk that was restricted to U.S. studies, suggesting that these results may be 

confounded by factors such as dietary behaviors of the U.S. population (19). Results 

from a recent human study suggest that the apparent association between egg 

consumption and T2D risk in the U.S. population may be due to an interaction between 

meat and egg intake, and not egg intake alone (20).  

It is widely recognized that obesity is a major risk factor for insulin resistance, which 

precedes the onset of overt diabetes (1–3). We previously reported that a whole egg-

based diet attenuates cumulative body weight gain in the Zucker diabetic fatty (ZDF) rat, 

a well-characterized genetic model of obesity and T2D (21,22). The observed 

attenuation in body weight gain was attributed, in part, to an 8% reduction in body fat in 

ZDF rats consuming a whole egg-based diet (21). Furthermore, we extended this 

research to a diet-induced model of obesity and demonstrated that whole egg 

consumption in diet-induced obese rats markedly reduces weight gain compared to diet-

induced obese rats fed a casein-based diet (unpublished observations; CJ Saande, SK 

Jones, KE Hahn, CH Reed, MJ Rowling, KL Schalinske, 2017). There is very limited 

evidence regarding the association between egg consumption and measures of insulin 

sensitivity (14,23,24) and, to our knowledge, the impact of whole egg consumption on 

insulin signaling has not been examined. Thus, the objective of this study was to 

D
ow

nloaded from
 https://academ

ic.oup.com
/cdn/advance-article-abstract/doi/10.1093/cdn/nzz015/5374517 by Iow

a State U
niversity user on 28 M

arch 2019



www.manaraa.com

investigate whether the previously observed reductions in adiposity in ZDF rats fed a 

whole egg-based diet are related to improved insulin sensitivity and enhanced insulin 

signaling.   

Methods 

Rats and Diets. All animal studies were approved by the Institutional Animal Care and 

Use Committee at Iowa State University (IACUC # 1-18-8674-R; approval date 

01/12/18) and were performed according to the Iowa State University Laboratory Animal 

Resources Guidelines. Male Zucker diabetic fatty (ZDF; fa/fa) rats (n= 12) and lean 

(fa/+) control rats (n=12) were purchased at 5 wk of age (Charles River Laboratories). 

Rats were housed two per cage with a 12-h light-dark cycle in a temperature controlled 

room. All rats were acclimated to a semipurified diet (AIN-93G) for one wk. Following 

acclimation, rats were randomly assigned to 1 of 2 experimental diets (Table 1): a 

casein-based diet (n=12) or a whole egg-based diet (n=12). Both diets provided protein 

at 20% (w/w) and were matched for lipid content (17.7% total lipid) via the addition of 

corn oil to the casein-based diet to account for the additional lipid contribution of the 

whole egg. Diets were prepared weekly and rats were given ad libitum access to food 

and water for a period of 7 wk. Body weight and food intake were recorded 5 days/wk. 

Prior to sacrifice, food was withheld for 4 h and rats were anesthetized via a single 

intraperitoneal (IP) injection of ketamine:xylazine (90:10 mg/kg body weight). Following 

sedation, whole blood was collected via a tail vein bleed and blood samples were stored 

on ice until centrifugation. The extensor digitorum longus (EDL) muscle was removed 

from one leg prior to an insulin injection to account for basal differences in insulin 

signaling. All rats were then given an IP insulin injection (Sigma; 10 U/kg body weight) 
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and the EDL muscle was removed from the other leg 10 min post-insulin injection to 

allow sufficient time for insulin signaling to occur (25–28). Immediately following tissue 

removal, muscle samples were snap-frozen in liquid nitrogen and stored at -80°C for 

subsequent analysis. The epididymal fat pad was removed and weighed. A total of 24 

rats were euthanized; euthanasia was achieved by exsanguination. Whole blood was 

centrifuged in separation tubes and the resultant serum was stored at -80°C.  

Insulin tolerance tests. Insulin tolerance tests (ITT) were performed at wk 5 of 

experimental dietary treatment. Rats were fasted for a period of 4 h prior to insulin 

tolerance testing and given an IP insulin injection (0.5 U/kg body weight). Blood 

samples were collected from the tail vein immediately prior to the insulin challenge, as 

well as 15, 30, 45 and 60 min thereafter. Blood sampling was performed by making a 

nick with a sterilized razor blade toward the end of the tail and blood glucose was 

measured with the use of a glucometer (Bayer Healthcare). When blood glucose was 

above the detection limit (600 mg/dL), the maximum value of 600 mg/dL was used.  

Serum glucose and serum insulin. Serum collected on the final day of the study was 

used for analysis of fasting glucose, fasting insulin and calculation of the homeostatic 

model assessment of insulin resistance (HOMA-IR). Serum glucose was measured 

using a commercially available colorimetric kit (Wako Diagnostics). Analysis of serum 

insulin was measured by a commercially available immunoassay kit for the detection of 

insulin in rat sera (EMD Millipore).  
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Western blot analysis. 

Extensor digitorum longus muscles were homogenized in 800 L of lysis buffer [Tris-

hydrochloric acid (pH 7.8, 50 mM), Ethylenediaminetetraacetic acid (EDTA; 1 mM) 

Ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA; 1 mM), Glycerol (10%, w/v), 

Triton-X 100 (1%, w/v), Dithiothreitol (DTT; 1 mM)] containing phosphatase (Sigma) and 

protease (Thermo Scientific) inhibitors. Samples were then centrifuged at 4000 x g for 

15 min at 4C and the supernatant was collected. Protein concentrations were 

determined using a bicinchoninic acid assay (Pierce) according to the manufacturer’s 

instructions. A total of 20 g protein was loaded and run on a 4-15% gradient sodium 

dodecyl sulfate polyacrylamide gel (Bio-Rad). Following separation, proteins were 

transferred onto a polyvinylidene difluoride membrane (EMD Millipore) and blocked at 

room temperature for 1 h in Tris-buffered saline with 0.05% tween (TBST) and 5% non-

fat dry milk. Membranes were incubated in p-IGFI Receptor βTyr1135/1136/Insulin Receptor 

βTyr1150/1151, p-AktSer473, Akt and p-AS160Thr642 antibodies (Cell Signaling) at 1:1000 

overnight at 4 °C. Following incubation with primary antibody, membranes were washed 

and incubated with an anti-rabbit secondary antibody (Cell Signaling) at 1:5000 for one 

hour at room temperature. Membranes were incubated in enhanced chemiluminescent 

substrate (SuperSignal West Pico PLUS Sensitivity Substrate or SuperSignal West 

Femto Maximum Sensitivity Substrate; Thermo Scientific) for 5 min prior to imaging with 

the ChemiDoc XRS detection imaging system (Bio-Rad). Densitometry was determined 

using Image Lab software (BioRad) and raw data was normalized to total protein.  
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Statistical analysis.  

All data were evaluated for statistically significant differences (P < 0.05) with the use of 

SPSS Statistics Software Version 23 (IBM). Body and epididymal fat pad weights, food 

intake and serum parameters were analyzed with the use of a 2-factor ANOVA (diet x 

genotype). An analysis of main effects was performed when the interaction between diet 

and genotype was not statistically significant. Insulin tolerance test data was analyzed 

by a 3-factor, repeated measures ANOVA (time x diet x genotype) and statistically 

significant two-way interactions were followed by an analysis of simple main effects. 

Western blot data was analyzed with the use of a 3-factor mixed ANOVA to determine 

the effects of insulin, diet and genotype on insulin signaling. All pairwise comparisons 

were performed using the Fishers least significant difference post hoc test.  

Results 

Body and relative adipose tissue weights. As expected, there was a significant main 

effect of genotype on initial and final body weight. ZDF rats had a higher mean initial 

body weight compared to their lean counterparts and body weight was 13% higher in 

ZDF rats compared to lean rats on the final day of the study. Diet was without effect on 

final body weight in both lean and ZDF rats (Table 2). Likewise, there was a significant 

main effect of genotype on relative adipose tissue weight [epididymal fat pad weight (g/ 

100 g body weight)]. The ZDF genotype was associated with a 74% higher mean 

relative adipose tissue weight than the lean genotype. No significant differences in 

relative adipose tissue weight were observed across diets within lean or ZDF rats (Table 

2).   
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Food intake. Main effects analysis indicated a significant effect of genotype on food 

intake and total energy intake. ZDF rats exhibited an 86% higher mean total food intake 

compared to lean rats (Table 2). Likewise, total energy intake was 86% higher in ZDF 

rats compared to lean rats (Table 2).  There was no effect of diet on total food intake or 

total energy intake.  

Insulin tolerance test. Analysis of ITT blood glucose concentrations revealed a 

significant effect of time on circulating glucose concentrations, demonstrating that 

insulin effectively lowered blood glucose. There was also a significant effect of genotype 

and diet, as well as significant diet*genotype and time*genotype two-way interactions. 

As expected, there was a simple main effect of genotype (P < 0.001) on blood glucose, 

indicating markedly higher blood glucose in ZDF rats compared to lean rats at each time 

point (Figure 1). A simple main effect of time was also observed in the ZDF genotype 

(P = 0.001), but not the lean genotype (P = 0.836). Lastly, a simple main effect of diet 

was observed in the ZDF genotype (P < 0.001), but not in the lean genotype (P = 

0.987). With the exception of baseline blood glucose, ZDF rats fed the whole egg-based 

diet exhibited approximately 38% higher blood glucose concentrations from the 15-60 

min time points compared to ZDF rats fed the casein-based diet. In contrast, blood 

glucose did not differ between dietary treatment groups in lean rats at any of the time 

points (Figure 1).  

Serum glucose, serum insulin, HOMA-IR and HOMA-. There was a significant main 

effect of genotype on serum glucose, serum insulin and the HOMA-IR. As expected, 

mean serum glucose, serum insulin and HOMA-IR values were 244, 629 and 234% 

higher, respectively, in the ZDF genotype compared to the lean genotype (Table 3). 
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Diet was without effect on serum glucose concentrations within the lean genotype; 

however, serum glucose concentrations were increased by 35% in ZDF rats fed the 

whole egg-based diet compared to ZDF rats fed the casein-based diet (Table 3). No 

differences in serum insulin concentrations were observed across dietary groups within 

the lean genotype, whereas serum insulin was 68% higher in ZDF rats fed the casein-

based diet compared to ZDF rats fed the whole egg-based diet. There was no effect of 

diet on the HOMA-IR within the lean or ZDF genotype (Table 3). Lastly, there was a 

significant main effect of diet on the homeostatic model assessment of -cell function 

(HOMA-). The whole egg-based diet was associated with a mean decrease of 44% in 

HOMA- compared to the casein-based diet (Table 3).  

Insulin signaling pathway.  Insulin increased phosphorylation of the IR βTyr1150/1151 by 

291% in lean rats fed the whole egg-based diet compared to IR βTyr1150/1151 

phosphorylation prior to insulin (Figure 2); however, post-insulin IR βTyr1150/1151 

phosphorylation did not reach statistical significance (P = 0.215) in lean casein-fed rats 

compared to pre-insulin p- IR βTyr1150/1151. No differences in p-IR βTyr1150/1151 were 

observed pre- or post-insulin in ZDF rats, regardless of dietary treatment (Figure 2). In 

lean rats fed the casein- and whole egg-based diets, the post-insulin ratio of p-AktSer473: 

total Akt was increased 17-fold and 18-fold, respectively, compared to the pre-insulin 

ratio (Figure 3). Pre- and post-insulin p-AktSer473: total Akt did not differ in ZDF rats, 

regardless of dietary treatment. However, in ZDF rats fed the whole egg-based diet, the 

post-insulin p-AktSer473: total Akt ratio did not statistically differ from the lean genotype 

(Figure 3). No differences in post-insulin p-AS160Thr642 were observed, regardless of 

diet or genotype (data not shown). 
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Discussion 

The relation between egg consumption and T2D remains contradictory and evidence is 

limited regarding potential mechanisms that may explain the reported associations 

between dietary egg intake, glycemic control and incident diabetes. The present study 

aimed to examine the effects of egg consumption on insulin tolerance and insulin 

signaling in vivo using a rat model of obesity and T2D. While egg consumption impaired 

glycemic control in ZDF rats during an insulin tolerance test, no differences were 

observed in skeletal muscle insulin signaling between ZDF rats fed casein- and whole 

egg-based diets. Although skeletal muscle is the primary site of insulin-stimulated 

glucose disposal, glucose metabolism by the liver and adipose tissue also contributes to 

whole body glucose homeostasis (29–31). The relative contribution of these tissues to 

systemic glucose metabolism, as well as differences in timing between insulin tolerance 

testing and skeletal muscle collection for insulin signaling analysis, may explain the 

differential results observed between whole body insulin tolerance and skeletal muscle 

insulin signaling.  

Very few studies have investigated the effect of egg consumption on direct measures of 

insulin sensitivity (23). In the present study, we report higher blood glucose during an 

insulin tolerance test in ZDF rats consuming a whole egg-based diet compared to ZDF 

rats fed a casein-based diet. In support of this finding, egg consumption was inversely 

associated with insulin sensitivity and the metabolic clearance rate of insulin in a cross-

sectional analysis of a non-diabetic population, though these associations became 

insignificant after adjustment for body mass index and dietary cholesterol (23). Likewise, 

Djousse et al. reported an increase in fasting blood glucose and insulin resistance, as 
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measured by HOMA-IR, across varying amounts of egg consumption in a prospective 

cohort of older adults (14). However, the authors noted that the magnitude of difference, 

although statistically significant, was not likely to be of clinical significance (14). Here, 

we report higher fasting blood glucose in ZDF rats after 7 wk of dietary treatment with 

the whole egg-based diet, but no differences in HOMA-IR, a model used to quantify 

insulin resistance, between ZDF rats fed casein- and whole egg-based diets.  

In the early stages of insulin resistance, enhanced pancreatic insulin secretion attempts 

to compensate for reduced responsiveness to insulin in peripheral tissues as a means 

to maintain normal glucose tolerance. A physiologic approach to accomplish this goal is 

by enhanced -cell mass and activity (32,33). As insulin resistance progresses, 

compensatory hyperinsulinemia is unable to maintain normal blood 

glucose concentrations. Insulin secretion is continuously stimulated by hyperglycemia, 

and -cell structure and function becomes compromised, ultimately leading to apoptosis 

(33). In ZDF rats, -cell mass decreases between ages 6-12 wk of age, and is 

significantly reduced at 12 wk (34–36). The observed loss of -cell mass has been 

attributed an increase in cell death (34,35). -cell dysfunction in ZDF rats is 

accompanied by a progressive decline in circulating insulin concentrations, beginning at 

7 wk of age (34,36). We report significantly lower serum insulin, concomitant with higher 

serum glucose, in ZDF rats fed the whole egg-based diet compared to ZDF rats fed the 

casein-based diet after 7 wk of dietary treatment (13 wk of age). Additionally, 

consumption of a whole egg-based diet was associated with decreased HOMA-, an 

index of -cell function, suggesting impaired insulin production and secretion in rats fed 

the whole egg-based diet. It is possible that ZDF rats fed the whole egg-based diet 
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exhibit a higher rate of decline in -cell function, potentially explaining these differences. 

In cultured -cells, cholesterol accumulation results in apoptosis and impaired glucose-

stimulated insulin secretion (37–40). The cholesterol content of whole egg may play a 

role in the observed reduction in serum insulin; however, whether whole egg 

consumption impacts -cell function in ZDF rats remains to be determined.  

Aberrant insulin signaling in skeletal muscle and adipose tissue impairs insulin-

mediated translocation of GLUT4 and subsequent glucose uptake. To our knowledge, 

there are no previous studies examining the effect of egg consumption on insulin 

signaling. In the present study, phosphorylation of IR βTyr1150/1151 was not significantly 

increased in ZDF rats following an insulin injection, regardless of experimental dietary 

treatment. This result is consistent with findings from numerous human studies, which 

show reduced tyrosine phosphorylation of the insulin receptor and its subsequent 

kinase activity in states of insulin resistance (41–46). The serine/threonine kinase Akt is 

activated by insulin-stimulated phosphorylation at both Thr308 and Ser473 and plays a 

key role in the regulation of glucose uptake into insulin responsive tissues (47). As 

expected, we report a marked increase in the ratio of p-AktSer473: total Akt in lean rats in 

response to insulin. Conversely, the p-AktSer473: total Akt ratio was not significantly 

increased by insulin in ZDF rats fed both casein- and whole egg-based diets. In 

agreement with this finding, several studies report defective Akt phosphorylation and 

kinase activity in insulin resistant subjects compared to lean controls (48–52). 

Phosphorylation of AS160, a downstream substrate of Akt, links insulin signaling to 

GLUT4 translocation and impaired insulin-stimulated AS160 phosphorylation has been 

reported in skeletal muscle of diabetic human subjects (52,53). In contrast to these 
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findings, we did not observe differences in post-insulin p-AS160Thr642 between lean and 

ZDF rats, regardless of dietary treatment group.  

Eggs are a source of high-quality protein, and several human studies report an 

association between egg consumption, increased satiety and reduced caloric intake 

(54–57). Egg consumption has also been shown to promote weight loss in a limited 

number of human studies (58,59). In contrast to our previous findings (21,22), we did 

not observe a reduction in body weight gain in ZDF rats fed a whole egg-based diet. 

Moreover, relative adipose tissue weight not differ between ZDF rats, regardless of 

dietary treatment. It is well-documented that weight loss is a highly effective strategy to 

improve insulin sensitivity and glycemia, both in the prevention and treatment of T2D 

(60,61). Furthermore, numerous human studies report improved glycemic control in type 

2 diabetics following adherence to low-carbohydrate, low-glycemic index and high-

protein diets (62,63). Indeed, beneficial impacts off egg consumption on blood glucose 

control have been shown in human subjects when combined with energy or 

carbohydrate restriction (13,24,64,65). For example, Pearce et al. reported 

improvements in glycemic and lipid profiles in type 2 diabetics following consumption of 

a hypoenergetic, high-protein diet containing 2 eggs/d (13). In individuals with metabolic 

syndrome, Blesso et al. found a reduction in HOMA-IR following consumption of a 

carbohydrate-restricted diet including 3 eggs/d (24). In the current study, rodent diets 

were matched for macronutrient content and there were no differences in final body 

weight between ZDF rats fed casein-based and whole egg-based diets. Taken together, 

these findings suggest that reported improvements in glycemic control associated with 

egg consumption may be related to changes in dietary macronutrient content and/or 
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improved body weight management, and not a direct effect of egg consumption on 

skeletal muscle insulin signaling.  

A limitation of this study is the quantity of dried whole egg used in the whole egg-based 

diet, which exceeds the amount of whole egg that would typically be consumed in a 

human diet. The quantity of dried whole egg was determined such that the whole egg- 

and casein-based diets were matched for protein content. Additionally, analysis of -cell 

mass and glucose-stimulated insulin secretion would provide insight into whether -cell 

function declines more rapidly in ZDF rats fed the whole egg-based diet. Lastly, insulin 

signaling was only analyzed in the EDL muscle. The EDL is frequently used in analysis 

of skeletal muscle insulin signaling (7,66–69). However, it is possible that sensitivity for 

phosphoregulation by insulin may differ in other muscle groups. Future studies will 

include analysis of skeletal muscle groups composed of different fiber types, as well as 

additional tissues, to provide a more comprehensive examination of insulin signaling.  

In summary, these data suggest that whole egg consumption may impair insulin 

sensitivity in T2D rats. Although consumption of a whole egg-based diet negatively 

impacted whole body insulin sensitivity in ZDF rats, we were unable to identify changes 

in skeletal muscle insulin signaling that could explain this finding. Future studies 

investigating the impact of whole egg consumption on -cell function may offer a 

potential explanation for the reduction in fasting serum insulin in ZDF rats fed a whole 

egg-based diet. Furthermore, dose-response studies are warranted to determine 

whether the observed impairment in insulin sensitivity is maintained at a lower dose of 

whole egg.  
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FIGURE 1 

Insulin tolerance test blood glucose in lean and Zucker diabetic fatty rats fed a casein-

based or whole egg-based diet for 5 wk.  Data are means   SEMs; n=3-6. Data within 

the same time point without a common letter differ (P < 0.05). Three-factor repeated 

measures ANOVA: Time, P < 0.001; Diet, P = 0.027; Genotype, P < 0.001; Time*Diet, P 

= 0.662; Time*Genotype P = 0.031; Diet*Genotype P = 0.025; Time*Diet*Genotype, P = 

0.572.  
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FIGURE 2 

Skeletal muscle p-IR βTyr1150/1151 (A) and representative western blot images of skeletal 

muscle p-IR βTyr1150/1151 and total protein (B) pre- and post-insulin injection in lean and 

Zucker diabetic fatty rats fed a casein-based or whole egg-based diet for 7 wk. Data are 

expressed relative to pre-insulin p-IR βTyr1150/1151 in lean rats fed the casein-based diet. 

Data are means   SEMs; n=5-6. Bars without a common letter differ (P < 0.05). Three-

factor mixed ANOVA: Insulin, P = 0.029; Diet, P = 0.492; Genotype, P = 0.874; 

Insulin*Diet, P = 0.297; Insulin*Genotype P = 0.169; Diet*Genotype P = 0.723; 

Insulin*Diet*Genotype, P = 837. LC-Pre, Lean Casein Pre-insulin; LC-Post, Lean 

Casein Post-insulin; ZC-Pre, ZDF Casein Pre-insulin; ZC-Post, ZDF Casein Post-

insulin; LWE-Pre, Lean Whole Egg Pre-insulin; LWE-Post, Lean Whole Egg Post-

insulin; ZWE-Pre, ZDF Whole Egg Pre-insulin; ZWE-Post, ZDF Whole Egg Post-insulin.  

  

D
ow

nloaded from
 https://academ

ic.oup.com
/cdn/advance-article-abstract/doi/10.1093/cdn/nzz015/5374517 by Iow

a State U
niversity user on 28 M

arch 2019



www.manaraa.com

 
 

FIGURE 3 

The ratio of skeletal muscle p-AktSer473: total Akt (A) and representative western blot 

images of skeletal muscle p-AktSer473, total Akt and total protein (B) pre- and post-insulin 

injection in lean and Zucker diabetic fatty (ZDF) rats fed a casein-based or whole egg-

based diet for 7 wk. Data are expressed relative to the pre-insulin p-AktSer473:total Akt 

ratio in lean rats fed the casein-based diet. Data are means   SEMs; n=5-6. Bars 

without a common letter differ (P < 0.05). Three-factor mixed ANOVA: Insulin, P < 

0.001; Diet, P = 0.53; Genotype, P = 0.157; Insulin*Diet, P = 0.571; Insulin*Genotype P 

= 0.11; Diet*Genotype P = 0.535; Insulin*Diet*Genotype, P = 0.609. LC-Pre, Lean 

Casein Pre-insulin; LC-Post, Lean Casein Post-insulin; ZC-Pre, ZDF Casein Pre-insulin; 

ZC-Post, ZDF Casein Post-insulin; LWE-Pre, Lean Whole Egg Pre-insulin; LWE-Post, 

Lean Whole Egg Post-insulin; ZWE-Pre, ZDF Whole Egg Pre-insulin; ZWE-Post, ZDF 

Whole Egg Post-insulin. 
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TABLE 1 Composition of the casein-based diet and whole egg-based diet fed to lean 

control and Zucker diabetic fatty rats for 7 wk. 

Ingredient (g/kg)1 Casein  Whole Egg  

  
Casein (vitamin free) 200 0 

Dried whole egg 0 413 

Cornstarch 423 387 

Glucose monohydrate 150 150 

Mineral Mix (AIN 93) 35 35 

Vitamin Mix (AIN 93) 10 10 

Biotin 1% 0 0.4 

Corn oil 177 0 

Choline bitartrate 2 2 

L-Methionine 3 3 

Macronutrients (kcal/kg)   

  
Protein 800 800 

Lipid 1593 1593 

Carbohydrate 2292 2148 

Total Energy 4685 4541 

 
 
1All ingredients were purchased from Envigo with the exception of dried whole egg 

(Rose Acre Farms) as well as L-methionine and choline bitartrate (Sigma-Aldrich).  

2 Total protein and lipid content provided by 413 g of dried whole egg was 48.4 (200g) 

and 42.9% (177g), respectively.  

D
ow

nloaded from
 https://academ

ic.oup.com
/cdn/advance-article-abstract/doi/10.1093/cdn/nzz015/5374517 by Iow

a State U
niversity user on 28 M

arch 2019



www.manaraa.com

 
TABLE 2 Body and adipose tissue weights and total food intake of lean and Zucker 

diabetic fatty (ZDF) rats fed a casein-based or whole egg-based diet for 7 wk.   

1
 Data are means   SEMs; n=6. Data within the same row without a common letter differ (P < 0.05). 

2
 Data are means   SEMs; n=3. Total food intake per cage (2 rats per cage). Data within the same row 

without a common letter differ (P < 0.05). 

TABLE 3 Fasting serum glucose, fasting serum insulin and HOMA-IR of lean and 

Zucker diabetic fatty (ZDF) rats fed a casein-based or whole egg-based diet for 7 wk1.   

1 Data are means   SEMs; n=6. Data within the same row without a common letter 

differ (P < 0.05).  

 

 

 Lean ZDF P 

 
Casein Whole Egg Casein Whole Egg Genotype Diet 

Genotype x 
Diet 

Initial Body Weight
1
 

(g) 
157   5

a 
155   6

a 
191   6

b 
191   4

b 
<0.001 0.877 0.824 

Final Body Weight
1
 (g) 329   7

a 
334   5

a 
378   4

b 
371   8

b 
<0.001 0.897 0.368 

Epididymal Fat Pad 
Weight

1
 (g/100 g body 
weight) 

0.47   0.04
a 0.50   

0.08
a 0.86   0.08

b 
0.83   0.03

b 
<0.001 0.992 0.642 

Total Food Intake
2
 (g) 990   28

a 
930   29

a 
1843   135

b 
1732   163

b 
<0.001 0.449 0.818 

Total Energy Intake
2
 

(kcal) 
4639   130

a 4224   
132

a 8636   632
b 

7865   740
b 

<0.001 0.265 0.729 

 Lean ZDF P 

 
Casein Whole Egg Casein Whole Egg Genotype Diet 

Genotype 
x Diet 

Serum glucose 
(mg/dL) 

124   13
c 

189   19
c 

457   31
b 

618   86
a 

<0.001 0.026 0.317 

Serum Insulin 
(ng/mL) 

0.3   0.1
c 

0.4   0.1
c 

3.2   0.4
a 

1.9   0.6
b 

<0.001 0.116 0.078 

HOMA-IR 2.1   0.46
b 

4.0   1.2
b 

82   9.3
a 

59   20
a 

<0.001 0.344 0.267 

HOMA- (%) 51   13
ab

 32   13
b
 72   13

a
 37   12

ab
 0.331 0.046 0.554 
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